Math 115
Fall 2018
Lecture 18

$$
\begin{aligned}
& 2 a^{2}+b^{2}=c^{2} ? \\
& y=m+0 \cdot b+b^{2} d=r
\end{aligned}
$$

Special Products:
(1)

$$
\begin{aligned}
(A+B)^{2} & =(A+B)(A+B) \\
& =A^{2}+A B+B A+B^{2} \\
& =A^{2}+A B+A B+B^{2} \\
& =A^{2}+2 A B+B^{2}
\end{aligned}
$$

ex: $(x+3)^{2}=(x)^{2}+2(x)(3)+(3)^{2}$

$$
=x^{2}+6 x+9
$$

ex: $(4 x+5)^{2}=(4 x)^{2}+2(4 x)(5)+(5)^{2}$

$$
=16 x^{2}+40 x+25
$$

$$
\text { ex: } \begin{aligned}
\left(6 x^{2}+7 y^{3}\right)^{2} & =\left(6 x^{2}\right)^{2}+2\left(6 x^{2}\right)\left(7 y^{3}\right)+\left(7 y^{3}\right)^{2} \\
& =36 x^{4}+84 x^{2} y^{3}+49 y^{6}
\end{aligned}
$$

ex:

$$
\begin{aligned}
\left(8 x^{3}+5 x^{2}\right)^{2} & =\left(8 x^{3}\right)^{2}+2\left(8 x^{3}\right)\left(5 x^{2}\right)+\left(5 x^{2}\right)^{2} \\
& =64 x^{6}+80 x^{5}+25 x^{4}
\end{aligned}
$$

Special Products:
(2)

$$
\begin{aligned}
(A-B)^{2} & =(A-B)(A-B) \\
& =A^{2}-A B-B A+B^{2} \\
& =A^{2}-A B-A B+B^{2} \\
& =A^{2}-2 A B+B^{2}
\end{aligned}
$$

ex: $(x-4)^{2}=(x)^{2}-2(x)(4)+(4)^{2}$

$$
=x^{2}-8 x+16
$$

ex: $(7 x-10)^{2}=(7 x)^{2}-2(7 x)(10)+(10)^{2}$

$$
49 x^{2}-140 x+100
$$

$$
\text { ex: } \begin{aligned}
\left(8 x^{5}-11 y^{4}\right)^{2} & =\left(8 x^{5}\right)^{2}-2\left(8 x^{5}\right)\left(11 y^{4}\right)+\left(11 y^{4}\right)^{2} \\
& =64 x^{10}-176 x^{5} y^{4}+121 y^{8}
\end{aligned}
$$

ex: $\quad\left(12 x^{7}-5 x^{3}\right)^{2}=\left(12 x^{7}\right)^{2}-2\left(12 x^{7}\right)\left(5 x^{3}\right)+\left(5 x^{3}\right)^{2}$

$$
=144 x^{14}-120 x^{10}+25 x^{6}
$$

Special Products:

$$
\begin{aligned}
& \text { (3) }(A+B)(A-B)=A^{2}-A B+B A-B^{2} \\
& \text { Conjugates }=A^{2}-A B+B B-B^{2} \\
& =A^{2}-B^{2} \\
& \text { ex: }(x+5)(x-5)=(x)^{2}-(5)^{2} \\
& =x^{2}-25 \\
& \text { ex: } \begin{aligned}
\underbrace{6 x-1)(6 x+1}_{\text {conjugates }}) & =(6 x)^{2}-(1)^{2} \\
& =36 x^{2}-1
\end{aligned}
\end{aligned}
$$

$$
\text { ex: } \begin{aligned}
& \underbrace{\left(3 x^{5}-10 y^{2}\right)\left(3 x^{5}+10 y^{2}\right)}_{\text {Conjugates }} \\
= & \left(3 x^{5}\right)^{2}-\left(10 y^{2}\right)^{2}=9 x^{10}-100 y^{4}
\end{aligned}
$$

ex: $\underbrace{(x+2)(x-2)}_{\text {Conjugates }}\left(x^{2}+4\right)$

$$
\begin{aligned}
=(\underbrace{\left.x^{2}-4\right)\left(x^{2}+4\right)}_{\text {Conjugates }} & =\left(x^{2}\right)^{2}-(4)^{2} \\
& =x^{4}-16
\end{aligned}
$$

Division of Polynomial by Monomial:

$$
\begin{aligned}
& \frac{A+B-C}{D}=\frac{A}{D}+\frac{B}{D}-\frac{C}{D} \\
& \frac{12 x^{3}-10 x^{2}+6 x}{2 x}=\frac{12 x^{3}}{2 x}-\frac{1^{5} x^{2}}{2 x}+\frac{3}{2 x} \\
& =6 x^{2}-5 x^{1}+3 \\
& =6 x^{2}-5 x+3
\end{aligned}
$$

ex: Divide $\frac{35 x^{6}+14 x^{4}-7 x^{2}}{7 x^{2}}$
Monomial

$$
=\frac{35 x^{6}}{7\left(x^{2}\right.}+\frac{14 x^{4}}{x x^{2}}-7 x^{2}
$$

$$
=\left(5 x^{4}+2 x^{2}-1\right.
$$

Trinomial, $D=4$, L.C. $=5$, Constant $=-1$

$$
=\frac{50 x^{6} y^{4}}{-5 x^{2} y^{2}}-\frac{25 x^{4} y^{3}}{-5 x^{2} y^{2}}+\frac{5 x^{2} y^{2}}{-5 x^{2} y^{2}}
$$

$$
D=4+2=6 \rightarrow D=2+1=3
$$

$$
=-10 x^{4} y^{2}+5 x^{2} y-1
$$

Trinomial, $D=4+2=6$

$$
\text { L.C. }=-10 \text {, Const. }-1
$$

Dividing Polynomial by binomial (Long Division)

$$
\begin{array}{lr}
\begin{array}{lr}
\frac{3 x^{2}-8 x+5}{x-1} & x - 1 \longdiv { 3 x ^ { 2 } - 8 x + 5 } \\
x-3 x=3 x^{2} & -\frac{\left(3 x^{2}-3 x+5\right)}{-5 x+5} \\
x-5=-5 x & \\
& \text { Remainder } \rightarrow 0 \\
& \text { final Ans: } 3 x-5 x+5)
\end{array}
\end{array}
$$

Divide $\frac{4 x^{3}-3 x^{2}+6 x-10}{x+2}$

$$
\begin{aligned}
& x-4 x^{2}=4 x^{3} \\
& x-11 x=-11 x^{2} \\
& x-28=28 x
\end{aligned}
$$

$$
\begin{aligned}
& x[28]=28 x \text { Always } \\
& \text { final Ans: Remainder }-(28 x+56) \\
& \longrightarrow-66
\end{aligned}
$$

$$
4 x^{2}-11 x+28+\frac{-66}{x+2} \text { o Denominator }
$$

$$
\begin{aligned}
& \begin{array}{lr}
x+2 & 4 x^{2}-11 x+28 \\
x + 2 \longdiv { 4 x ^ { 3 } - 3 x ^ { 2 } + 6 x - 1 0 }
\end{array} \\
& -\frac{\left(4 x^{3}+8 x d d\right)}{-11 x^{2}+6 x-10} \\
& \frac{-\left(-11 x^{2}-22 x d\right)}{28 x-10}
\end{aligned}
$$

Divide: $x^{3}-10 x^{2}+40$ Numerator has a missing term

Nov 21-7:09 AM
Divide: $\frac{2 x^{3}-21-14 x+3 x^{2}}{2 x+3}$

$$
\text { final Ans } x^{2}-7
$$

$$
\begin{aligned}
& 2 x + 3 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } - 1 4 x - 2 1 } \\
& 2 x x^{2}=2 x^{3}-\frac{\left(2 x^{3}+3 x^{2} d d\right.}{-14 x-21} \\
& 2 x-7=-14 x \\
& -\left(\begin{array}{ll}
-14 x & -21
\end{array}\right) \\
& \text { Rem. } \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& x - 3 \longdiv { x ^ { 3 } - 1 0 x ^ { 2 } + 0 x + 4 0 } \\
& x \sqrt[x^{2}]{ }=x^{3} \quad-\frac{\left(x^{3}-3 x^{2} d \quad d\right)}{-7 x^{2}+0 x+40} \\
& x-7 x=-7 x^{2} \\
& x[-21=-21 x \quad \text { Always } \quad-21 x+40 \\
& \text { final Ans: } x^{2}-7 x-21+\frac{-23}{x-3} \text { Rem. } \rightarrow-23
\end{aligned}
$$

